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INTRODUCTION 

FINS AHE the most convenient and easy way of increasing the 
heat transfer from a solid surface to a surrounding fluid. It 
is also a classical problem ofthe heat transfer literature which 
has been constantly revised over the years. The standard 
reference on fins is the book by Kern and Kraus [I]. 

The classical fin solution is based on a one-dimensional 
formulation which assumes that the temperature within the 
fin is uniform along its cross-section. This assumption is well 
justifed when the convection coefficient between the fin and 
its surrounding fluid is small compared with the thermal 
conductivity of the fin material. The major parameter 
governing the accuracy of this classical solution is the trans- 
versal Biot number, Bi = h W/k, where W is half of the fin 
thickness. as shown in Fig. l(a). Except for Ei much less 
than one, it has been shown [2-S] that this solution dos not 
yield accurate results, and that the errors rapidly increase 
with increasing Biot numbers. This limits the range of appli- 
cation of the one-dimensional approach. 

An attempt to improve one-dimensional fin solutions was 
made by Aparecido and Cotta [6]. There the authors use the 
ideas of the coupled integral equation approach [7] to develop 
an approximate and accurate solution that takes into account 
the tempeature non-uniformity across the fin. The solution 
of ref. [6] retains the same degree of analytical involve- 
ment as fo: the classical approach but extends its range 
of applicability to considerably larger values of the Biot 
number. 

Another point to be considered is that the temperature at 
the base of the fin is not really constant as is usually assumed. 
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The presence of a fin attached to a solid surface causes 
temperature elevation or depression at the fin root depending 
upon whether the solid temperature is lower or higher than 
the temperature of the surrounding fluid, respectively [8,9]. 

A first attempt to investigate the errors in the calculated 
magnitudes of heat lost from the fin due to non-uniformities 
of the base temperature was recently made by Look [IO]. 
There the author performed a two-dimensional calculation 
and assumed an idealized non-constant fin root temperature 
of the form r = T,+a cos (7ry/2W), where ‘a’ was at most 
+0.2 (To-r,). It was shown that non-uniformities on the 
root temperature strongly affect the fin performance. 

Look also studied the effect of unequal top and bottom 
surface coefficients which are responsible for cross-sectional 
asymmetries in the temperature field along the fin. According 
to ref. [IO], these asymmetries are not important when inves- 
tigating the influence of root temperature variation on fin 
performance. 

The work of Look provided insight into the effect of non- 
constant root temperature and motivated the present work. 
Here a more general situation is investigated. As is shown in 
Fig. l(a), the fin is considered to be attached to a thick 
wall, as is the case in many engineering situations. A constant 
temperature is prescribed at the wall surface opposite to the 
fin. In this respect the fin root temperature is part of the 
solution and is not known a priori as is the case in ref. [IO]. 
The problem is solved numerically using a finite volume 
methodology, and the results are compared with those 
obtained using the improved one-dimensional solution of 
ref. [6] as well as with the two-dimensional analytical 
solution. both for constant-root temperature. 
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FIG. I. Geometry and coordinate system for the problem. (a) Multifin array attached to a thick wall. 
(b) Solution domain. 
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NOMENCLATURE 

Biot number. /I W’jli 
dimensionless tin length. L;,/ W 
dimension&s wall thickness. L, / W 
convection coethcient 
thermal conductivity 
fin length 
wall thickness 
half of spacing between tins 
dimensionless heat transfer rate at the base of the 
lin 
heat transfer rate at the base of the fin per unit 
length along the base 

T temperature 
r, temperature at the wall surface opposite to where 

the fins are attached 
T, ambient temperature 
W half of tin thickness 
x s/w 
.I- coordinate along fin lcnpth 
Y J/W 

J’ coordinate along fin cross-section. 

Greek symbol 
0 dimensionless temperature (T- T, )/( r,- T, ). 

ANALYSES 

The problem to be considered is shown in Fig. I(a). As 
seen in the figure. a multifin array is attached to a wall whose 
inner surface is at r,. The surrounding fluid is at T,, and 
the heat transfer coefficient between the fins and the fluid. h, 
is assumed to be constant throughout the fin. Because of the 
symmetry of the problem. the solution domain can be taken 
as being that of Fig. l(b). All geometrical parameters are 
shown in Figs. I (a) and (b). 

For the rectangular two-dimensional fin shown in Fig. 
l(b), the heat conduction equation for constant thermal 
conductivity can be written in dimensionless form as 

, 
J’0/dX-+G;d20/c?YZ = 0. (1) 

In writing equation (I), the following dimensionless variables 
and parameter were adopted : 

@=(T-T,)/(T,-T,), X=s/L,, Y=y/W. 

G, = La/W. (2) 

According to Fig. l(b), equation (I ) is to be solved sub- 
ject to the following boundary conditions: 

I. x= -L,/L,, o< Y< l+L,/w+o= I 

2. X=0, I Q Y< l+Ly/W~dO/t3X+BiG,0=0 

3. X= I, O< Y< I+8@/aX+siG,D=O 

4. -L,/L,gxgl, Y=o+ao/aY=o 

5. O<X<l, Y= I +dO/dY+BiO=O 

6. -L,/L,<XsO, Y= I+L,/W d@/aY=O (3) 

where 

Bi = h W/k. (4) 

In addition to Bi and G,, two other dimensionless par- 
ameters govern the problem ; they are the wall thickness Gz 
and the fin spacing G, : 

Gz = L,/ W, G, = Ly/ W. (5) 

For the present work, Bi was varied from 0.001 to IO, 
covering values that are commonly encountered in fin appli- 
cations: G, was varied from I lo 6 and GZ ranged from 0. I 
to 50. The dimensionless fin spacing G1 was kept constant 
and equal to 6. 

Once the temperature field has been calculated, the dimen- 
sionless heat transfer rate at the base of the fin, per unit 
length along the base, can be determined as 

where q0 is the heat transfer rate at the base of the fin per 
unit length along the base. 

The numerical solution of equation (I) was obtained using 
the finite volume methodology as described in ref. [I I]. Use 

was made of Cartesian coordinates and the domain irregu- 
larity was handled via the variable-conductivily method as 
suggested in ref. [ 121. These are common practices in the heat 
transfer lilerature and need not be elaborated here. 

The computational mesh varied depending on the Biot 
number investigated. For Bi values less than one, 30 x 30 
grid points (X and Y directions) were employed, and for 
higher values of Bi the grid population increased, reaching 
a maximum of 60 x 60 points for Ei = IO. The grids were 
uniformly spaced in the wall and in the tin. 

RESULTS AND DISCUSSION 

Presented in Table I are the results for the dimensionless 
heat transfer rates at the base of the fin, Qe, for the limiting 
case where the wall thickness is zero (Gz = 0) and a uniform 
temperature is imposed at the base of the fin. Values of Q0 
were calculated using the exact two-dimensional solution 
[l3], the numerical model of the present work, the modified 
one-dimensional solution of ref. [6], and the classical one- 
dimensional solution. The errors associated to each one of 
the approximate solutions and the exact solution are also 
indicated in Table I. As can be seen in the table, both the 
modified and the classical solution incur large errors at high 
Biot numbers. 

For GZ values other than zero, the temperature at the base 
of the fin will no longer be uniform. Results for the tem- 
perature profile along Y for X = 0 are presented in Fig. 2. 
Each curve is for a given dimensionless wall thickness GZ. 
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FIG. 2. Temperature profile along Y for X = 0, having the 
dimensionless wall thickness, G2, as a curve parameter; 

Bi= l,G, =6andG,=6. 
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FK. 3. Temperature profile along Y for X = 0, having the 
Biot number as curve parameter: G, = 6, G2 = I and G, = 6. 

The region for - I < Y < I, shown between the dashed lines. 
corresponds to the base of the fin. Except for very large or 
very small valus of G2, the fin root temperature cannot be 
assumed as uniform. 

The dependence on the Biot number of the temperature 
profle along Y for X = 0 is explored in Fig. 3. For all cases 
presented in the figure, G, = 6, Gz = I and G1 = 6. Again, 
the region corresponding to the base of the fin is shown 
between dashed lines. As expected, as the Biot number 
decreases the profile at the base of the fin gets flatter. 
However, the root fin temperature will only he that of the 
wall surface for Bi values less than 0.001. As seen in the 
fgure, even for Bi = 0. I the root fin temperature is approxi- 
mately 14% smaller than r,,. 

Further examination of each temperature profile in Fig. 3 
shows that for high Bi values the fin acts as an insulator and 
the temperature at its base exhibits a parabolic shape, having 
its maximum value along the center of the fin. Also, the 
temperature along the base of the fin (- I < Y < I) is higher 
than the temperature at the wall (Y > I and Y < - I). As 
the Bi value decreases the temperature profile gets flatter and 
at Bi = 0.001 it is virtually flat. An interesting feature to be 
noted is that for Bi = 0. I the temperature profile exhibits a 
curvature which is opposite to those for Bi = 5, I and 0.5, 
indicating the occurrence of the temperature depression 
elTect [8,9]. 

Results for the temperature profile along Y for X = 0 were 
also obtained for constant values of Bi, Gz and G3, and 
different values of the fin dimensionless length, G,. It was 
observed that, for the range of values investigated here, the 
temperature profile at the base of the fin is little affected by 

Cl. 
According to what was previously discussed, use of the 

wall temperature instead of the actual root temperature in 
calculating the heat transfer from the fin, even for Biot num- 
bers as small as 0. I, can result in large errors. This is better 
explored with the aid of Fig. 4, which shows how the dimen- 
sionless heat transfer rate at the base of the fin, QO. varies 
with Bi. 

The upper curve in Fig. 4 was obtained using the ana- 
lytical two-dimensional solution, whereas the lower curve 
corrresponds to the numerical results of the present work. 
For the analytical solution the root fin temperature was 
taken as T,,. For both the analytical and the numerical results 
use was made of equation (6). It should be noted that this 
figure was prepared taking Gz = 2; that is, wall thickness 
was equal to the fin thickness. As fins are usually very thin 

Fm. 4. Dimensionless heat transfer rate at the base of the tin 
as a function of the Biot number: G, = 6, G? = 2 and G, = 6. 

this represents a thin wall. In general. Gz is greater than that. 
which would increase the deviations between the two curves. 
As seen from the figure, even for Bi = 0. I the analytical two- 
dimensional solution overpredicts Qu by 25%. The devi- 
ations between the curves are due to temperature non-uni- 
formities at the base of the fin as well as temperature 
depressions associated with the wall thermal resistance. 

According to the results that have been shown. the 
inclusion of two-dimensional effects to account for tem- 
perature non-uniformities along the fin cross-section cannot 
be justified in practical situations if the root temperature is 
maintained uniform and equal to r,. This is true even for 
fins attached to thin and well conducting walls. Exceptions 
occur for Bi values less than 0.01. However, for such small 
values of Bi good accuracy is achieved using the classical 
one-dimensional model, and there is no need to use more 
elaborate solutions, as observed in Table I. 

Another aspect to be explored from Fig. 4 is that the 
analytical solution Qu always increases with increasing Bi, 
whereas for the numerical solution Q0 reaches a plateau 
beyond which it remains constant. This finding can be 
reasoned by noticing that for the analytical solution, because 
T,, is prescribed at the base of the fin, an increase in Bi can 
be seen as an increase in the heat transfer coefficient 11, while 
k is kept constant. This necessarily leads to an increase in 
Q”. For the numerical solution, the heat delivered through 
the fin to the surrounding fluid is bounded by the thermal 
resistance due to the wall, regardless of Bi. 

For Biot numbers greater than I, the heat transfer rate Q,, 
tends to decrease for increasing values of Bi. This is so 
because the thermal resistance due to the fin causes the heat 
flow to deviate from the base of the fin, going directly from 
the heated wall at Tb to the cooled wall whose temperature 
approaches T, as Bi increases. 

CONCLUSIONS 

The present work has dealt with two-dimensional fins 
attached to a thick wall. Effects of temperature non-uni- 
formities at the base of the fin, as well as temperature 
depression due to the wall thermal resistance, are explored 
for various Biot numbers and different geometrical con- 
figurations. 

The temperature profile at the base of the fin is highly 
dependent upon the Biot number and the dimensionless wall 
thickness, Gz. Except for very large or very small values of 
G2, the fin root temperature cannot be assumed as uniform, 
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Table 1. Comparison between the dimensionless heat transfer rates at the base of the fin calculated using different models 
at uniform root temperature 

Bi G, 

Exactt 

Qo 

Numericalt Modified6 [6] C!assical 11 

0. Error (%) PO Error (%) Qe Error (%) 

0.1 I 0.3547 0.3547 -0.0080 0.3547 -0.0080 0.3589 - 1.2 
0.1 5 0.5956 0.5955 -0.017 0.5970 0.23 0.6052 - 1.6 
1 1 1.852 1.850 0.073 1.823 - 1.6 2.000 -8.0 
1 5 I .806 I .799 -0.36 1.789 -0.93 2.000 -11 

10 1 4.316 4.277 -0.90 3.548 -18 6.336 -47 
10 5 4.09 1 3.952 -3.4 3.3x1 -17 6.325 -55 

t Exact two-dimensional solution. 
1 Numerical solution of the present work. 
8 Modified one-dimensional solution of ref. [6]. 
11 Classical one-dimensional solution. 

as is commonly adopted in the literature. For wall thickness 
equal to the fin thickness, it was shown that when the Bi 
values are less than 0.1 the root temperature is virtually 
uniform, but it can only be considered equal to the pre- 
scribed wall temperature for Bi less than 0.001. 

It has been demonstrated that the common practice of 
including two-dimensional effects to account for temperature 
non-uniformities along the fin cross-section cannot be jus- 
tified in practical situations if the root temperature is kept 
uniform. In situations where fin and wall have about the 
same thickness, only for Bi values less than 0.01 can the 
wall thermal resistance be neglected in calculaling the heat 
transfer rate at the base of the fin. Usually, as walls are thicker 
than that, this limit has to be pushed further down. For such 
small values of Bi good accuracy can be achieved with the 
classical one-dimensional model and there is no need to 
employ more elaborate solutions. 
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INTRODUCTION As compared to the abundant literature on smooth chan- 

NATURAL convection heat transfer in smooth and ribbed 
nels (see reviews by Jaluria [I], Aihara [2] and Moffat and 

vertical channels is of interest in electronic cooling appli- 
Ortega [3]). relatively few studies exist on natural con- 

cations. The primary purpose of the present paper is to study 
vection in ribbed channels. Moffat and Ortega [3] and Incro- 

natural convection heat transfer in both smooth and ribbed 
pera [4] have reviewed the pertinent literature. Ortega and 

vertical channels, and to determine the effect of two-dimen- 
Moffat [5,6] have studied free convection heat transfer past 
a vertical adiabatic surface with three-dimensional heated 

sional ribs on the smooth channel heat transfer. protrusions. Shakerin ef al. [7] numerically studied the effect 


